| NAMA : MOHAMMAD FATIH AHDA 
             NPM     : 0953010030 Buatlah analisa ketepatan untuk model  Y = ax + b Y = ax2 + bx Y = ax2 + bx + c Tentukan yang mana yang paling teliti ?    Jawab : 
   | x | y | x² | xy |     | 1 | 120 | 1 | 120 |     | 3 | 250 | 9 | 750 |     | 5 | 370 | 25 | 1850 |     | 7 | 550 | 49 | 3850 |     | 9 | 760 | 81 | 6840 |     | 11 | 980 | 121 | 10780 |     | 13 | 1260 | 169 | 16380 |     | 15 | 1840 | 225 | 27600 |     | 64 | 6130 | 680 | 68170 |  Y = ax + b Pers. Nominal ![]() 2 + b ![]()![]() + b N
   | 68170 | 680 | 64b | *8 |     | 6130 | 64 | 8b | *64 |     | 545360 | 5440 | 512 | 
 |     | 392320 | 4096 | 512 | 
 |     | 153040 | 1344 | 0 | 
 |     | A | 113.869 | 
 | 
 |     | 
 | 
 | 
 | 
 |     | 
 | 
 | 
 | 
 |     | 6130 | 64a | 8b | 
 |     | 6130 | 7287.619 | 8b | 
 |     | 8b | -1157.62 | 
 | 
 |     | B | -144.702 | 
 | 
 |  Pers. Least quare  Y = 4.859x2 – 42.171
 
   | X | Y | Ŷ | X-Ŷ | (Y-Ŷ)^2 |     | 1 | 120 | -37.312 | 38.312 | 24747.065 |     | 3 | 250 | 1.560 | 1.440 | 61722.434 |     | 5 | 370 | 79.304 | -74.304 | 84504.164 |     | 7 | 550 | 195.920 | -188.920 | 125372.646 |     | 9 | 760 | 351.408 | -342.408 | 166947.422 |     | 11 | 980 | 545.768 | -534.768 | 188557.430 |     | 13 | 1260 | 779.000 | -766.000 | 231361.000 |     | 15 | 1480 | 1051.104 | -1036.104 | 183951.779 |     | 
 | 
 | 
 | 
 | 1067163.941 |     SD =![]()        =  ![]() = 390.451                         Y = ax2 + bx 
   | X | y | x² | x³ | x⁴ | xy | x²y |     | 1 | 120 | 1 | 1 | 1 | 120 | 120 |     | 3 | 250 | 9 | 27 | 81 | 750 | 2250 |     | 5 | 370 | 25 | 125 | 625 | 1850 | 9250 |     | 7 | 550 | 49 | 343 | 2401 | 3850 | 26950 |     | 9 | 760 | 81 | 729 | 6561 | 6840 | 61560 |     | 11 | 980 | 121 | 1331 | 14641 | 10780 | 118580 |     | 13 | 1260 | 169 | 2197 | 28561 | 16380 | 212940 |     | 15 | 1840 | 225 | 3375 | 50625 | 27600 | 414000 |     | 64 | 6130 | 680 | 8128 | 103496 | 68170 | 845650 |  
          Pers. Least quare  Y = 4.859x2 – 42.171x 
   | x | y | Ŷ | X-Ŷ | (Y-Ŷ)^2 |     | 1 | 120 | -37.312 | 38.312 | 24747.07 |     | 3 | 250 | 1.56 | 1.44 | 61722.43 |     | 5 | 370 | 79.304 | -74.304 | 84504.16 |     | 7 | 550 | 195.92 | -188.92 | 125372.6 |     | 9 | 760 | 351.408 | -342.408 | 166947.4 |     | 11 | 980 | 545.768 | -534.768 | 188557.4 |     | 13 | 1260 | 779 | -766 | 231361 |     | 15 | 1840 | 1051.104 | -1036.1 | 622356.9 |     | 
 | 
 | 
 | 
 | 1505569 |     SD =![]()        =  ![]() = 463.77                Y = ax2 + bx + c 
   | x | y | x² | x³ | x⁴ | xy | x²y |     | 1 | 120 | 1 | 1 | 1 | 120 | 120 |     | 3 | 250 | 9 | 27 | 81 | 750 | 2250 |     | 5 | 370 | 25 | 125 | 625 | 1850 | 9250 |     | 7 | 550 | 49 | 343 | 2401 | 3850 | 26950 |     | 9 | 760 | 81 | 729 | 6561 | 6840 | 61560 |     | 11 | 980 | 121 | 1331 | 14641 | 10780 | 118580 |     | 13 | 1260 | 169 | 2197 | 28561 | 16380 | 212940 |     | 15 | 1840 | 225 | 3375 | 50625 | 27600 | 414000 |     | 64 | 6130 | 680 | 8128 | 103496 | 68170 | 845650 |  
 Pers. Least quare  Y = 6x2 .89+ 3.631x + 151.526             
   | X | Y | Ŷ | X-Ŷ | (Y-Ŷ)^2 |     | 1 | 120 | 162.047 | -161.047 | 1767.95 |     | 3 | 250 | 224.429 | -221.429 | 653.876 |     | 5 | 370 | 341.931 | -336.931 | 787.8688 |     | 7 | 550 | 514.553 | -507.553 | 1256.49 |     | 9 | 760 | 742.295 | -733.295 | 313.467 |     | 11 | 980 | 1025.157 | -1014.16 | 2039.155 |     | 13 | 1260 | 1363.139 | -1350.14 | 10637.65 |     | 15 | 1840 | 1756.241 | -1741.24 | 7015.57 |     | 
 | 
 | 
 | 
 | 24472.03 |     SD =![]()        =  ![]() = 59.127 Jadi yang lebih teliti adalah mempergunakan Pers. Least quare  Y = 6x2 .89+ 3.631x + 151.526 dengan nilai SD=59.127       
   
 | 
Tidak ada komentar:
Posting Komentar